Mathematics Class X
 Chapter -4
 Quadratic Equations Module-I/3

Smt Indumathi K
TGT (Maths/Phy)
AECS,Kaiga.

Learning outcomes in module I/3 are:

> Recall Quadratic Polynomial.
>Defining Quadratic Equation.
>Identifying Quadratic Equations.
$>$ Representing situations in the form of Quadratic equations.

Quadratic Polynomial

- A polynomial of degree two is known as quadratic polynomial.
- $P(x)=a x^{2}+b x+c$ is a quadratic polynomial where $a \neq 0 \& a, b \& c$ are real numbers.

$$
\text { Eg: } 2 x^{2}-7 x+5,-8 y-y^{2}-1280
$$

Quadratic Equation:

- A quadratic equation in the variable x is an equation of the form $a x^{2}+b x+c=0$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are real numbers, $\mathrm{a} \neq 0$.
- For example, $2 x^{2}-7 x+5=0$ is a quadratic equation.
Similarly, $x^{2}-2 x-2=0, x^{2}-5 x+6=0$, are also quadratic equations.
- Any equation of the form $p(x)=0$, where $p(x)$ is a polynomial of degree 2 , is a quadratic equation.

Standard form of a quadratic equation:

$a x^{2}+b x+c=0, a \neq 0$ is called the standard form of a quadratic equation.

$$
\text { Eg: } x^{2}+32 x-273=0,2 x^{2}-13 x+9=0
$$

Identifying the quadratic equations.

Check whether the following are quadratic equations:

$$
(i)(x-2)(x+5)=(x-3)(x+4)+x^{2}
$$

Solution: Given equation is $(x-2)(x+5)=(x-3)(x+4)+x^{2}$

$$
\begin{aligned}
& \text { i.e, } x^{2}+3 x-10=x^{2}-x-12+x^{2} \\
& \text { i.e, } x^{2}-2 x-2=0
\end{aligned}
$$

which is of the form $\mathbf{a x} \mathbf{x}^{\mathbf{2}} \mathbf{+ b x + c}=\mathbf{0}$.

So, it is a quadratic equation.

(ii) $x^{2}-3 x+5=(x+5)^{2}$

Solution: Given equation is $x^{2}-3 x+5=(x+5)^{2}$

$$
\begin{gathered}
\text { i.e, } x^{2}-3 x+5=x^{2}+10 x+25 \\
\text { i.e, } \quad 13 x+20=0
\end{gathered}
$$

which is not of the form $\mathbf{a x} \mathbf{x}^{\mathbf{+}} \mathbf{b x}+\mathbf{c}=\mathbf{0}$.

So, it is not a quadratic equation.
(iii) $x^{3}-3 x^{2}+5 x=(x-2)^{3}$

Solution: Given equation is $x^{3}-3 x^{2}+5 x=(x-2)^{3}$

$$
\begin{aligned}
& \text { i.e, } x^{3}-3 x^{2}+5 x=x^{3}-6 x^{2}+12 x-8 \\
& \text { i.e, } 3 x^{2}-7 x+8=0
\end{aligned}
$$

which is of the form $\mathbf{a x} \mathbf{x}^{2}+\mathbf{b x + c}=\mathbf{0}$.
So, it is a quadratic equation.

100\% Scoring Tips

If question is "Is the equation $x^{2}+6 x+\sqrt{x}-3=0$
a quadratic equation?"
Then, solution is given as $x^{2}+6 x+\sqrt{x}-3=0$ is not a quadratic polynomial ,because of $\sqrt{ } x$, hence it is not a quadratic equation.
Be Careful: But don't solve as, Yes it is a quadratic equation, as the degree of equation is 2 . This is a wrong statement.

Representing situations in quadratic

 form।. The area of a rectangular plot is $528 \mathrm{~m}^{2}$. The length of the plot (in metres) is one more than twice its breadth. We need to find the length \& breadth of the plot.
Solution: Let breadth of the rectangular plot be x m
So, length of the plot $=(2 x+1) m$
Area of a rectangular plot $=(2 x+1) x=528$
i.e, $2 x^{2}+x-528=0$
which is the required quadratic equation.
2. Rohan's mother is 26 years older than him. The product of their ages(in years) 3 years from now will be 360 . We would like to find Rohan's present age.
Solution: let present age of Rohan be x years.
Rohan's mother's present age be $(x+26)$ years.
After 3 years,Rohan's age=($x+3$)years
After 3 years,Rohan's mother's age $=(x+26+3)$ years
ATQ $(x+3)(x+29)=360$ i.e $x^{2}+32 x-273=0$ which is the required quadratic equation.

Thank You

